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INTRODUCTION

When building statistical models, we often need to quantify the
uncertainty around the estimated parameters we are interested in.

So far in this class, we have been doing so using standard errors and
confidence intervals.

Computing standard errors is often straightforward when we have closed
forms.

For example, the standard error for  is .

When  is unknown, replace with .

What to do when we do not have closed forms?

X̄ σ/√n

σ s = σ̂
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INTRODUCTION

Setting confidence intervals and conducting hypotheses testing often
requires us to know the distribution of the parameter of interest.

A key tool for doing this is the central limit theorem.

Recall that according to CLT, for large samples, averages and sums are
approximately normally distributed.

With some work, the CLT allows confidence intervals and hypotheses
testing on means, proportions, sums, intercepts, slopes, and so on.

But...what if we want to set confidence intervals on a correlation or an
sd or a ratio?
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INTRODUCTION

Once neat solution is to approximate whatever distribution you have in
mind via re-sampling from the true population.

For example, suppose I would like to estimate the average income of
Durham residents and quantify uncertainty around my estimate.

First I need a sample (of course!).

Suppose I sample 1000 residents and record their income as 
. Then, my estimate of average income is .

Next, I should quantify my uncertainty around that number. I can do so
using the standard error  mentioned earlier, which relies on the
CLT.

X1, … , X1000 X̄

σ/√n
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BOOTSTRAP

Alternatively, I could approximate the entire distribution of average
income myself as follows:

1. Generate  different samples of 1000 Durham residents.

2. For each set  of 1000 residents, compute .

3. Make a histogram of all  values. This approximates the
distribution of average income of Durham residents.

Point estimate of average income is thus the mean of .

To quantify uncertainty, can use the standard deviation of 
.

For confidence intervals, use the quantiles of the histogram.

In practice, however, the procedure above cannot be applied, because
we usually cannot generate many samples from the original population.

What to do then? Bootstrap!

B = 100
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BOOTSTRAP

Bootstrap is a very powerful statistical tool.

It can be used to "approximate" the distribution of almost any parameter
of interest.

Bootstrap allows us to mimic the process of obtaining new sample sets by
repeatedly sampling observations from the original data set.

That is, replace step 1 of the previously outlined approach with

1. Generate  different samples of 1000 Durham residents by
re-sampling from the original observed sample with replacement.

Can then follow the remaining steps to approximate the distribution of
the parameter of interest.

Ideally, the sample you start with should be representative of the entire
population. Bootstrap relies on the original sample!

B = 100
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BOOTSTRAP

Here's a figure from the ISL book illustrating the approach.
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http://faculty.marshall.usc.edu/gareth-james/ISL/


WHAT'S NEXT?
MOVE ON TO THE READINGS FOR THE NEXT MODULE!
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