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MATIVATING EXAMPLE: THE RADON ANALYSIS

As a motivating example, we will look at data on radon levels of houses
within each of 85 counties in Minnesota.

The data is in the file Radon.txt on Sakai.

The full data actually includes data for more states but we will focus on
just Minnesota like the textbook.

The U.S. Environmental Protection Agency and the Surgeon General’s
Office have estimated that as many as 20,000 lung cancer deaths are
caused each year by exposure to radon (reference here).

Radon is a cancer-causing radioactive gas and is the second leading cause
of lung cancer. Unfortunately, you cannot see, smell or taste it. The most
commonly used device for making short-term radon measurements in
homes is the charcoal canister

Radon occurs naturally as an indirect decay product of uranium.

Given that counties are nested within states, thinking about a
hierarchical model here makes sense.
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https://www.radon.com/radon_facts/


MATIVATING EXAMPLE: THE RADON ANALYSIS

Variable Description

radon radon levels for each house

log_radon log(radon)

state state

floor lowest living area of each house: 0 for basement, 1 for first
floor

countyname county names

countyID ID for the county names (1-85)

fips state + county fips code

uranium county-level soil uranium

log_uranium log(uranium)

The response variable, radon (or log_radon) is continuous, so we need a
(hierarchical/multilevel) regression framework.

To ascertain that we need a multilevel model here, we should check for
differences across counties during EDA.
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HIERARCHICAL LINEAR MODELS

Hierarchical models (like the model for the school data) can be applied
to regression contexts where observations are grouped

First we will only focus on models for linear regression.

However, the same ideas apply to logistic regression (as we will see
soon), Poisson regression, etc.

Recall that a standard linear model with one predictor can be written as

Now suppose that the observations fall into  groups, indexed by .

Then there are several ways to take advantage of the group within the
context of hierarchical models.

yi = β0 + β1xi1 + ϵi;   ϵi ∼ N(0, σ2);    i = 1, … , n.

J j
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RANDOM INTERCEPTS MODEL

First, we can let the intercept alone vary by group, if we think that the
predictor has the same effect on each group, but the overall intercept
(grand mean of the response) is different for each group.

This is known as the random intercepts model or the varying-intercept
model, and is often written as

where  indexes observations and  indexes groups.

The model can also be written as

yij = β0j + β1x1ij + ϵij;    i = 1, … , nj;    j = 1, … , J

ϵij ∼ N(0, σ2)

β0j ∼ N(β0, τ 2
0 ).

i j

yij = (β0 + γ0j) + β1x1ij + ϵij;    i = 1, … , nj;    j = 1, … , J

ϵij ∼ N(0, σ2)

γ0j ∼ N(0, τ 2
0 ).
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RANDOM INTERCEPTS MODEL

Allows separate intercepts for each group, but shrinks estimates towards
common value.

Useful for repeated measurements, when the "groups" are individuals,
e.g., we take a subject's blood pressure three times and include all three
measurements in the model).

Also useful when some groups have small sample sizes, so that estimation
of individual group means is highly variable.

6 / 13



RANDOM SLOPES MODEL

We may want to let only the slopes vary by group, if we think that the
predictor has a different effect on each group, but the overall intercept
is the same for each group.

This is known as the random slopes model or the varying-slope model,
and is often written as

The model can also be written as

yij = β0 + β1jx1ij + ϵij;    i = 1, … , nj;    j = 1, … , J

ϵij ∼ N(0, σ2)

β1j ∼ N(β1, τ 2
1 ).

yij = β0 + (β1 + γ1j)x1ij + ϵij;    i = 1, … , nj;    j = 1, … , J

ϵij ∼ N(0, σ2)

γ1j ∼ N(0, τ 2
1 ).
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RANDOM SLOPES MODEL

Allows separate slopes for each group, but shrinks estimates towards
common value.

Also useful when some groups have small sample sizes, so that estimation
of slopes is highly variable.

The model implies the same intercept for each group.
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RANDOM SLOPES AND INTERCEPTS MODEL

We can also combine both ideas, that is, allow for the slopes and
intercepts to both vary by group, if we think that the predictor has a
different effect on each group, and the overall intercept is also different
for each group.

This is known as the random slopes and intercepts model or the varying-
slope, varying-intercept model, and is often written as

where  is the bivariate normal distribution with mean  and
covariance matrix .

The model can also be written as

yij = β0j + β1jx1ij + ϵij;    i = 1, … , nj;    j = 1, … , J

ϵij ∼ N(0, σ2)

(β0j, β1j) ∼ N2((β0, β1), Σ).

N2(μ, Σ) μ

Σ

yij = (β0 + γ0j) + (β1 + γ1j)x1ij + ϵij;    i = 1, … , nj;    j = 1, … , J

ϵij ∼ N(0, σ2)

(γ0j, γ1j) ∼ N2(0, Σ).
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RANDOM SLOPES AND INTERCEPTS MODEL

Allows for separate slopes and intercepts for each group, but shrinks
estimates towards common value

Useful when some groups have small sample sizes, so that estimation of
slopes and intercepts is highly variable

 are called random effects while  are called fixed
effects. Models with fixed and random effects are often called mixed
effects models.

(γ0j, γ1j) (β0, β1)
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MIXED EFFECTS MODEL

Use the lmer command in the lme4 package in R to estimate the
parameters using maximum likelihood (ML) or restricted maximum
likelihood (REML) estimation.

Take STA 601/602 and/or STA 610 for information on fitting these models
using Bayesian methods.

Also, note that the terms fixed effects, random effects, and mixed
effects can have (very) different meanings in different fields.

So, we will not get too carried away with the terminology.

For us, the important thing will be to be able to distinguish between
parameters that vary by group and those that do not.
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MODEL ASSESSMENT AND VALIDATION

Model assessment and validation from linear regression carries over.

You should still have linearity (by each group for varying slopes),
independence of the errors (and also of the varying effects for each
predictor), equal variance, and normality.

You should still look out for outliers and check for multicollinearity.

Model comparison between two multi-level models does not quite work
the same way.

We will not dive deeply into estimation but basically, ML produces
unbiased estimates for the fixed effects but not the random effects
whereas REML produces unbiased estimates for the random effects.

When using the anova function in R, keep the random effects part the
same when comparing two models (so you'll be comparing fixed effects).
Use AIC or BIC to decide the form of the random effects.
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WHAT'S NEXT?
MOVE ON TO THE READINGS FOR THE NEXT MODULE!
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