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MULTILEVEL, CLUSTERED OR GROUPED DATA

Often data are grouped or clustered naturally, for example

students within schools,

patients within hospitals,

voters within counties or states, or

repeated measurements on same person, as is often the case in
longitudinal studies.

For such clustered data, we may want to infer or estimate the
relationship between a response variable and certain predictors collected
across all the groups.

Ideally, we should do so in a way that takes advantage of the relationship
between observations in the same group, but we should also look to
borrow information across groups.

Hierarchical or multilevel models provide a principled way to do so. We
will start with simpler cases to elucidate the main ideas.
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HYPOTHETICAL SCHOOL TESTING EXAMPLE

Suppose we wish to estimate the distribution of test scores for students
at  different high schools.

In each school , where , suppose we test a random sample
of  students.

Let  be the test score for the th student in school , with 
.

Option I: estimation can be done separately in each group, where we
assume

where for each school ,  is the school-wide average test score, and 

is the school-wide variance of individual test scores.
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HYPOTHETICAL SCHOOL TESTING EXAMPLE

We can do classical inference for each school based on large sample 95%

CI: , where  is the sample average in school , and 

 is the sample variance in school .

Clearly, we can overfit the data within schools, for example, what if we
only have 4 students from one of the schools?

Option II: alternatively, we might believe that  for all ; that is,
all schools have the same mean. This is the assumption (null hypothesis)
in ANOVA models for example.

Option I ignores that the 's should be reasonably similar, whereas
option II ignores any differences between them.

It would be nice to find a compromise!

This is what we are able to do with hierarchical modeling.
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HIERARCHICAL MODEL

Once again, suppose

We can assume that the 's are drawn from a distribution based on the
following: conceive of the schools themselves as being a random sample
from all possible school.

Suppose  is the overall mean of all school's average scores (a mean of
the means), and  is the variance of all school's average scores (a
variance of the means).

Then, we can think of each  as being drawn from a distribution, e.g.,

which gives us one more level, resulting in a hierarchical specification.

Usually,  and  will also be unknown so that we need to estimate
them (think maximum likelihood or Bayesian methods).

yij|μj, σ2
j ∼ N (μj, σ2

j) ;    i = 1, … , nj;    j = 1, … , J.
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HIERARCHICAL MODEL: SCHOOL TESTING

EXAMPLE

Back to our example, it turns out that the multilevel estimate is

but since the unknown parameters have to be estimated, we actually
have

where  is the completely pooled estimate (the overall sample mean of
all test scores).
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HIERARCHICAL MODEL: SCHOOL TESTING

EXAMPLE

We will only scratch the surface of hierarchical modeling. Take a look at
the readings for hierarchical linear models on the website for more
resources.

If you want to take a course that explores hierarchical models in much
more detail, consider taking STA 610 (after taking STA 602).

For those interested in Bayesian inference (feel free to skip this if you
are not!), it turns out that the posterior distribution of , 

, where
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HIERARCHICAL MODEL: IMPLICATIONS

Our estimate for each  is a weighted average of  and , ensuring

that we are borrowing information across all levels through  and .

The weights for the weighted average is determined by relative
precisions (the inverse of variance is often referred to as precision) from
the data and from the second level model.

Suppose all . Then the schools with smaller  have estimated 

 closer to  than schools with larger .

Thus, the hierarchical model shrinks estimates with high variance
towards the grand mean.
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WHAT'S NEXT?
MOVE ON TO THE READINGS FOR THE NEXT MODULE!
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