
IDS 702: MODULE 2.7

AGGREGATED OUTCOMES; PROBIT REGRESSION

DR. OLANREWAJU MICHAEL AKANDE

1 / 12



AGGREGATED BINARY OUTCOMES

In the datasets we have seen so far under logistic regression, we observe
the binary outcomes for each observation, that is, each .

This is not always the case. Sometimes, we get an aggregated version,
with the outcome summed up by combinations of other variables.

For example, for individual-level data, suppose we had

response 0 0 1 1 1 0 1 1 0 0 0 1 0 0 1 0 1 1 1 0 0 1 1 0 1

predictor 3 3 2 1 2 3 2 2 2 2 3 1 3 1 1 2 2 2 2 1 3 3 3 1 3

where predictor is a factor with 3 levels: 1,2,3.

The aggregated version of the same data could look like

predictor n successes

1 31 17

2 35 16

3 34 14

yi ∈ {0, 1}
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AGGREGATED BINARY OUTCOMES

Recall that if  (that is,  is a random variable that
follows a binomial distribution with parameters  and ), then  follows
a  distribution when .

Alternatively, we also have that if , then 
.

That is, the sum of  "iid"  random variables gives a random
variable with the  distribution.

The logistic regression model can be used either for Bernoulli data (as we
have done so far) or for data summarized as binomial counts (that is,
aggregated counts).

In the aggregated form, the model is

Y ∼ Bin(n, p) Y

n p Y
Bernoulli(p) n = 1

Z1, … , Zn ∼ Bernoulli(p)
Y = ∑

n

i
Zi ∼ Bin(n, p)

n Bernoulli(p)
Bin(n, p)

yi|xi ∼ Bin(ni, πi);    log( ) = β0 + β1xi1 + β2xi2 + … + βpxip,
πi

1 − πi
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BERNOULLI VERSUS BINOMIAL OUTCOMES

Normally, for individual-level data, we would have

##   response predictor
## 1        0         3
## 2        0         3
## 3        1         2
## 4        1         1
## 5        1         2
## 6        0         3

M1 <- glm(response~predictor,data=Data,family=binomial)
summary(M1)

## 
## Call:
## glm(formula = response ~ predictor, family = binomial, data = Data)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -1.261  -1.105  -1.030   1.251   1.332  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)
## (Intercept)   0.1942     0.3609   0.538    0.591
## predictor2   -0.3660     0.4954  -0.739    0.460
## predictor3   -0.5508     0.5017  -1.098    0.272
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 138.27  on 99  degrees of freedom
## Residual deviance: 137.02  on 97  degrees of freedom
## AIC: 143.02
## 
## Number of Fisher Scoring iterations: 4
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BERNOULLI VERSUS BINOMIAL OUTCOMES

But we could also do the following with the aggregate level data instead

M2 <- glm(cbind(successes,n-successes)~predictor,data=Data_agg,family=binomial)
summary(M2)

## 
## Call:
## glm(formula = cbind(successes, n - successes) ~ predictor, family = binomial, 
##     data = Data_agg)
## 
## Deviance Residuals: 
## [1]  0  0  0
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)
## (Intercept)   0.1942     0.3609   0.538    0.591
## predictor2   -0.3660     0.4954  -0.739    0.460
## predictor3   -0.5508     0.5017  -1.098    0.272
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1.2524e+00  on 2  degrees of freedom
## Residual deviance: 1.3323e-14  on 0  degrees of freedom
## AIC: 17.868
## 
## Number of Fisher Scoring iterations: 2

Same results overall! Deviance and AIC are different because of the different
likelihood functions.

Note that some glm functions use n in the formular instead of n-successes.
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PROBIT REGRESSION
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PROBIT REGRESSION

Recall the "Bernoulli" logistic regression model:

for .

Here the link function is the logit function, which ensures that the
probabilities lie between 0 and 1.

We can also use the probit function , which is the quantile function
associated with the standard normal distribution , as the link.

yi|xi ∼ Bernoulli(πi);    log( ) = β0 + β1xi1 + β2xi2 + … + βpxip,
πi

1 − πi

i = 1, … , n

Φ−1

N(0, 1)
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PROBIT REGRESSION

That is, suppose  follows a standard normal distribution, that is, 
.

Then  is the CDF, that is, .

Formally, the probit regression model can be written as

It is then easy to see that

H
H ∼ N(0, 1)

Φ Pr[H ≤ h] = Φ(h)

yi|xi ∼ Bernoulli(πi);    Φ−1 (πi) = β0 + β1xi1 + β2xi2 + … + βpxip.

Pr[yi = 1|xi] = πi = Φ (β0 + β1xi1 + β2xi2 + … + βpxip)

= Pr[H ≤ β0 + β1xi1 + β2xi2 + … + βpxip].
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LATENT VARIABLE REPRESENTATION

It turns out that we can rewrite the probit regression model as

where  means  if  and  if .

To see that the two representations are equivalent, note that

Clearly, we do not observe  and it is thus referred
to as an auxiliary variable.

yi = 1[zi > 0];

zi = β0 + β1xi1 + β2xi2 + … + βpxip + ϵi;    ϵi ∼ N(0, 1)

yi = 1[zi > 0] yi = 1 zi > 0 yi = 0 zi < 0

Pr[yi = 1|xi] = Pr[zi > 0]

= Pr[β0 + β1xi1 + β2xi2 + … + βpxip + ϵi > 0]

= Pr[ϵi > −(β0 + β1xi1 + β2xi2 + … + βpxip)]

= Pr[ϵi < (β0 + β1xi1 + β2xi2 + … + βpxip)]   [since   ϵi ∼ N(0, 1)]

= Φ (β0 + β1xi1 + β2xi2 + … + βpxip) = πi

Z = (z1, z2, … , zn)
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PROBIT VS LOGIT FUNCTIONS?

The plots below compares the inverse logit function  and

the CDF function (inverse probit) .

Notice that they are similar, but the CDF of the standard normal
distribution has fatter tails (the inverse logit has thinner tails).

πi =
e

x

1 + ex

πi = Φ(x)
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PROBIT OR LOGISTIC REGRESSION?
In practice, the decision to use one or the other is often based on
preference: the overall conclusions from both are usually quite similar.

The results based on logistic regression (using odds and odds ratio) can be
more interpretable than those based on Probit regression.

In some applications, interpreting the 's may be meaningful but that is
not always the case.

For example, suppose  is a binary variable for whether or not person 
chooses to buy the new iPhone, then  can be thought of as person 's
"utility" in a way.

Works in this example, but does not always work across different
domains.

In R, use the glm command but set the option family="binomial(link=probit)
instead of family="binomial(link=logit).

zi

yi i

zi i
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WHAT'S NEXT?
MOVE ON TO THE READINGS FOR THE NEXT MODULE!
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