IDS 702: MODULE 2.7

AGGREGATED OUTCOMES; PROBIT REGRESSION

DR. OLANREWAJU MICHAEL AKANDE

Aggregated binary outcomes

- In the datasets we have seen so far under logistic regression, we observe the binary outcomes for each observation, that is, each $y_i \in \{0, 1\}$.
- This is not always the case. Sometimes, we get an aggregated version, with the outcome summed up by combinations of other variables.
- For example, for individual-level data, suppose we had

 response
 0
 0
 1
 1
 0
 1
 1
 0
 0
 1
 0
 1
 1
 0
 0
 1
 1
 0
 1
 1
 1
 0
 1
 1
 0
 1
 1
 0
 1
 1
 0
 1
 1
 0
 1
 1
 0
 1
 1
 0
 1
 1
 0
 1
 1
 0
 1
 1
 0
 1
 1
 0
 1
 1
 0
 1
 1
 0
 1
 1
 0
 1
 1
 0
 1
 1
 0
 1
 1
 0
 1
 1
 0
 1
 1
 0
 1
 1
 0
 1
 1
 0
 1
 1
 0
 1
 1
 0
 1
 1
 0
 1
 1
 1
 0
 1
 1
 1
 0
 1
 1
 0
 1
 1
 1
 0
 1
 1
 1
 0
 1
 1
 1
 1
 1
 1
 1
 1<

where predictor is a factor with 3 levels: 1,2,3.

• The aggregated version of the same data could look like

predictor	n	successes
1	31	17
2	35	16
3	34	14

Aggregated binary outcomes

- Recall that if $Y \sim Bin(n, p)$ (that is, Y is a random variable that follows a binomial distribution with parameters n and p), then Y follows a Bernoulli(p) distribution when n = 1.
- Alternatively, we also have that if $Z_1, \ldots, Z_n \sim \operatorname{Bernoulli}(p)$, then $Y = \sum_i^n Z_i \sim \operatorname{Bin}(n,p)$.
- That is, the sum of n "iid" Bernoulli(p) random variables gives a random variable with the Bin(n,p) distribution.
- The logistic regression model can be used either for Bernoulli data (as we have done so far) or for data summarized as binomial counts (that is, aggregated counts).
- In the aggregated form, the model is

$$y_i | x_i \sim \mathrm{Bin}(n_i,\pi_i); \;\; \log\left(rac{\pi_i}{1-\pi_i}
ight) = eta_0 + eta_1 x_{i1} + eta_2 x_{i2} + \ldots + eta_p x_{ip},$$

Bernoulli versus binomial outcomes

Normally, for individual-level data, we would have

## ## ## ## ## ##	1 0 2 2 0 3 3 1 2 4 1 5 5 1 2		
	1 <- glm(response~pre ummary(M1)		
##			
<pre>## Call: ## glm(formula = response ~ predictor, family = binomial, data = Data) ##</pre>			
##	# Deviance Residuals:		
##	Min 10 Med [.]		
## ##	-1.261 -1.105 -1.0		
##	# Coefficients:		
##	Estimate		
##	(Intercept) 0.1942		
	predictor2 -0.3660		
	predictor3 -0.5508		
##			
##	# (Dispersion parameter for binomial family taken to be 1)		
##			
##	Null deviance: 138.27 on 99 degrees of freedom		
##	Residual deviance: 137.02 on 97 degrees of freedom		
##	AIC: 143.02		
##			
##	Number of Fisher Scoring iterations: 4		

Bernoulli versus binomial outcomes

But we could also do the following with the aggregate level data instead

```
M2 <- glm(cbind(successes,n-successes)~predictor,data=Data agg,family=binomial)
summary(M2)
##
## Call:
## glm(formula = cbind(successes, n - successes) ~ predictor, family = binomial,
##
      data = Data agg)
##
## Deviance Residuals:
## [1] 0 0 0
##
## Coefficients:
##
              Estimate Std. Error z value Pr(|z|)
## (Intercept) 0.1942
                           0.3609
                                   0.538
                                              0.591
## predictor2 -0.3660
                         0.4954 - 0.739
                                              0.460
## predictor3 -0.5508
                           0.5017 - 1.098
                                              0.272
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 1.2524e+00 on 2 degrees of freedom
## Residual deviance: 1.3323e-14 on 0 degrees of freedom
## AIC: 17.868
##
## Number of Fisher Scoring iterations: 2
```

Same results overall! Deviance and AIC are different because of the different likelihood functions.

Note that some glm functions use n in the formular instead of n-successes.

IDS 702

PROBIT REGRESSION

PROBIT REGRESSION

Recall the "Bernoulli" logistic regression model:

$$y_i | x_i \sim ext{Bernoulli}(\pi_i); \;\; \log\left(rac{\pi_i}{1-\pi_i}
ight) = eta_0 + eta_1 x_{i1} + eta_2 x_{i2} + \ldots + eta_p x_{ip},$$

for $i = 1, \ldots, n$.

- Here the link function is the logit function, which ensures that the probabilities lie between 0 and 1.
- We can also use the probit function Φ^{-1} , which is the quantile function associated with the standard normal distribution N(0,1), as the link.

PROBIT REGRESSION

- That is, suppose H follows a standard normal distribution, that is, $H \sim N(0,1).$
- Then Φ is the CDF, that is, $\Pr[H \leq h] = \Phi(h).$
- Formally, the probit regression model can be written as

 $y_i | x_i \sim ext{Bernoulli}(\pi_i); \hspace{0.2cm} \Phi^{-1}\left(\pi_i
ight) = eta_0 + eta_1 x_{i1} + eta_2 x_{i2} + \ldots + eta_p x_{ip}.$

It is then easy to see that

$$\Pr[y_i=1|x_i]=\pi_i=\Phi\left(eta_0+eta_1x_{i1}+eta_2x_{i2}+\ldots+eta_px_{ip}
ight)$$

 $= \Pr[H \leq eta_0 + eta_1 x_{i1} + eta_2 x_{i2} + \ldots + eta_p x_{ip}].$

LATENT VARIABLE REPRESENTATION

It turns out that we can rewrite the probit regression model as

 $egin{aligned} y_i &= 1[z_i > 0]; \ z_i &= eta_0 + eta_1 x_{i1} + eta_2 x_{i2} + \ldots + eta_p x_{ip} + \epsilon_i; \ \ \epsilon_i \sim N(0,1) \end{aligned}$

where $y_i = \mathbb{1}[z_i > 0]$ means $y_i = \mathbb{1}$ if $z_i > 0$ and $y_i = 0$ if $z_i < 0$.

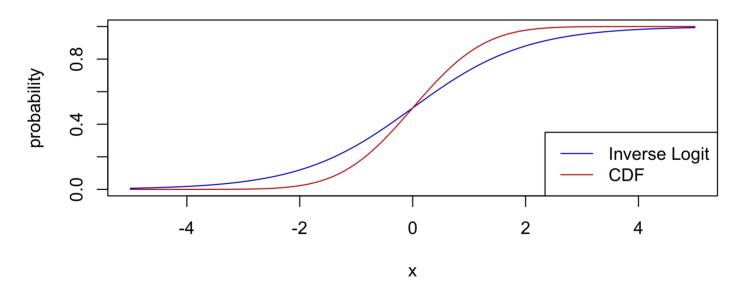
To see that the two representations are equivalent, note that

$$egin{aligned} &\Pr[y_i = 1 | x_i] = \Pr[z_i > 0] \ &= \Pr[eta_0 + eta_1 x_{i1} + eta_2 x_{i2} + \ldots + eta_p x_{ip} + \epsilon_i > 0] \ &= \Pr[\epsilon_i > -(eta_0 + eta_1 x_{i1} + eta_2 x_{i2} + \ldots + eta_p x_{ip})] \ &= \Pr[\epsilon_i < (eta_0 + eta_1 x_{i1} + eta_2 x_{i2} + \ldots + eta_p x_{ip})] \ &= \Phi\left(eta_0 + eta_1 x_{i1} + eta_2 x_{i2} + \ldots + eta_p x_{ip})
ight) \ &[{\rm since} \ \ \epsilon_i \sim N(0,1)] \ &= \Phi\left(eta_0 + eta_1 x_{i1} + eta_2 x_{i2} + \ldots + eta_p x_{ip}) = \pi_i \end{aligned}$$

• Clearly, we do not observe $Z = (z_1, z_2, ..., z_n)$ and it is thus referred to as an auxiliary variable.

PROBIT VS LOGIT FUNCTIONS?

• The plots below compares the inverse logit function $\pi_i=rac{e^x}{1+e^x}$ and the CDF function (inverse probit) $\pi_i=\Phi(x).$



 Notice that they are similar, but the CDF of the standard normal distribution has fatter tails (the inverse logit has thinner tails).

PROBIT OR LOGISTIC REGRESSION?

- In practice, the decision to use one or the other is often based on preference: the overall conclusions from both are usually quite similar.
- The results based on logistic regression (using odds and odds ratio) can be more interpretable than those based on Probit regression.
- In some applications, interpreting the z_i's may be meaningful but that is not always the case.
- For example, suppose y_i is a binary variable for whether or not person i chooses to buy the new iPhone, then z_i can be thought of as person i's "utility" in a way.
- Works in this example, but does not always work across different domains.
- In R, use the glm command but set the option family="binomial(link=probit) instead of family="binomial(link=logit).

WHAT'S NEXT?

Move on to the readings for the next module!

