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LEVERAGE, INFLUENCE, AND STANDARDIZED

RESIDUALS

Individual observations can have large impact on the estimates of
coefficients and SEs.

Sometimes these points are obvious from scatter plots, and sometimes
they are not, especially in multivariate data.

Concepts and metrics of leverage, influence, and standardized residuals
can help identify impactful and unusual points.

An outlier is a data point whose value does not follow the general trend
of the rest of the data.

When does a data point have high leverage? When is a data point
influential? How can we identify them?

Those are the questions we seek to answer in this module.
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LEVERAGE

Points with extreme predictor/covariate/feature values are called high
leverage points.

That is, the predictor values for these points are far outside the range of
values for most of the other points.

Thus, leverage has nothing to do with values of the response variable .

Leverage points POTENTIALLY have large impact on the estimates of
coefficients and SEs.

How?

First, note that the leverage score , for observation , is defined as
the  diagonal element of the projection or hat matrix.
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QUICK EXERCISE

Just to see what the hat matrix (and leverage scores) looks like, you will
compute it for a very simple example.

Open R/RStudio on your computer. Suppose the design matrix is

that is, we have one predictor and an intercept. You can set this up in R
using the matrix function.

Compute the corresponding hat matrix for this design matrix

Compare that leverage score to the original rows of .

Which diagonal element is the largest? What do you think about that
observation?
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LEVERAGE

Recall that

The leverage score  for observation  measures how far away the
values of the independent variables for the  observation are from
those of other observations.

That leverage score then clearly impacts predictions since, again, 
. Think about the exercise you just completed.

Some properties of :

.

.

High leverage points are often determined by paying attention to any
observation for which .

Points with  close to 1 will have more of an impact on model fit.
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BACK TO OUR EXAMPLE

Let's identify any high leverage points. Here, .

n <- nrow(model.matrix(regwagecsquares)); p <- ncol(model.matrix(regwagecsquares))
lev_scores <- hatvalues(regwagecsquares) #can also use influence(regwagecsquares)$hat 
plot(lev_scores,col=ifelse(lev_scores > (2*p/n), 'red2', 'navy'),type="h",
     ylab="Leverage score",xlab="Index",main="Leverage Scores for all observations")
text(x=c(1:n)[lev_scores > (2*p/n)]+c(rep(2,4),-2,2),y=lev_scores[lev_scores > (2*p/n)],
     labels=c(1:n)[lev_scores > (2*p/n)])

2(p + 1)/n = 16/93 ≈ 0.17
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HIGH LEVERAGE: WHAT TO DO?
Points with high leverage deserve special attention:

Make sure that they do not result from data entry errors.

Make sure that they are in scope for the types of individuals for
which you want to make predictions.

Make sure that you look at the impact of those points on estimates,
especially when you have interactions in the model.

Just because a point is a high leverage point does not mean it will have a
large effect on regression.

When a point has a large effect on the regression, we say that the
observation is influential.

Whether or not a high leverage point actually affects the regression line
depends on the value of the response variable .y
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COOK'S DISTANCE

What if a point has a large impact on the estimates of the regression
coefficients?

Dropping that point should change the coefficients significantly.

Consequently, a significant change in the coefficients should also
change that point's predicted  value by a lot.

For every point, we could delete it, re-run the regression, and see which
points lead to big changes in the predicted 's; very time consuming!

However, Cook's distance gives a formula for quantifying the influence of
the  observation, if it is removed from the sample. We have

where  is the predicted value after excluding the  observation.
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BIG COOK'S DISTANCES: WHAT TO DO?
Examine Cook's distances to look for large values.

Make sure there are no data entry errors in those points.

For each point with high Cook's distance, fit the model with and
without that point, and compare the results.

The consensus seems to be that  indicates an observation is an
influential value, but we generally pay attention to observations with 

.

If the results (predictions or scientific interpretations) do not change
much, just report the final model based on all data points and you don't
really need to report anything about the Cook's distances.

If results change a lot, you have several options...

Di > 1

Di > 0.5
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BACK TO OUR EXAMPLE

Can we try to identify any influential points?

plot(regwagecsquares,which=4,col=c("blue4"))
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LET'S COMPARE TO THE LEVERAGE SCORE

Which of the potentially influential points actually have high leverage?

plot(lev_scores,col=ifelse(lev_scores > (2*p/n), 'red2', 'navy'),type="h",
     ylab="Leverage score",xlab="Obs. number",main="Leverage Scores")
text(x=c(1:n)[lev_scores > (2*p/n)]+c(rep(2,4),-2,2),y=lev_scores[lev_scores > (2*p/n)],
     labels=c(1:n)[lev_scores > (2*p/n)])
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COOK'S DISTANCE: WHAT TO DO IF LARGE

CHANGES IN RESULTS?
It is generally OK to drop observations based on PREDICTOR values if

1. It is scientifically meaningful to do so; and

2. You intended to fit a model over the smaller  range to begin with
(and just forgot). When this is the case, you should mention this in
your analysis write-up and be careful when making predictions to
avoid extrapolation.

It is generally NOT OK to drop an observation based on its RESPONSE
value (assuming no data errors in that value). These are legitimate
observations and dropping them is essentially cheating by changing the
data to fit the model.

You should try transformations or collect more data.

X
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STANDARDIZED RESIDUALS (ALSO CALLED

INTERNALLY STUDENTIZED RESIDUALS)
How do we best identify outliers, i.e., points that don’t fit the pattern
implied by the line? We look for points with relatively large residuals.

It would be nice to have a common scale to interpret what a “big”
residual is, across all problems.

As with most metrics in statistics, we look at each residual divided by its
standard error (hence the term standardized residual).

The SE of any residual (that is,  and not ) depends on the values of
the predictors.

As such, it turns out that the residuals for high leverage predictors have
smaller variance than residuals for low leverage predictors.

Intuition: the regression line tries to fit high leverage points as closely as
possible, which results in smaller residuals for those points.

ei ϵi
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STANDARDIZED RESIDUALS (ALSO CALLED

INTERNALLY STUDENTIZED RESIDUALS)
Standardized residuals have a Normal(0,1) distribution.

Values with large standardized residuals are outliers.

How large is large? Well, remember that 95% of any normal distribution
should lie within 2 standard deviations of the mean...

Values with large standardized residuals are not necessarily influential on
the regression line. A point can be an outlier without impacting the line.
We need to examine their Cook's distance to determine influence.

It turns out that the Cook's distance  can also be expressed using the
leverage score  and square of the internally Studentized residuals.

Bottomline: make a plot of the standardized residuals to check for
outliers, but also find a way to add leverage scores and investigate
observations with high Cook's distance in the same plot.

Very easy to do in R.
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STANDARDIZED RESIDUALS: WHAT TO DO IF
LARGE OUTLIERS?
plot(regwagecsquares,which=5,col=c("blue4"))

Are there any outliers or influential points?
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STANDARDIZED RESIDUALS: WHAT TO DO IF
LARGE OUTLIERS?

As before, it is generally OK to drop observations based on PREDICTOR
values if

1. It is scientifically meaningful to do so; and

2. You intended to fit a model over the smaller  range to begin with
(and just forgot). When this is the case, you should mention this in
your analysis write-up and be careful when making predictions to
avoid extrapolation.

It is generally NOT OK to drop an observation based on its RESPONSE
value (assuming no data errors in that value). These are legitimate
observations and dropping them is essentially cheating by changing the
data to fit the model.

You should try transformations or collect more data.

Or just do nothing! It can be okay to have some outliers. Examine their
influence on your results and report them.

X
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WHAT'S NEXT?
MOVE ON TO THE READINGS FOR THE NEXT MODULE!
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