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BACK TO OUR MOTIVATING EXAMPLE

Let's fit the following default MLR model to our Harris Trust and Savings Bank
example using R.

We can estimate  in R directly as follows:

X <- model.matrix(~ sex + senior + age + educ + exper, data= wages)
y <- as.matrix(wages$bsal)
beta_hat <- solve(t(X)%*%X)%*%t(X)%*%y; beta_hat

##                     [,1]
## (Intercept) 6277.8933861
## sexFemale   -767.9126888
## senior       -22.5823029
## age            0.6309603
## educ          92.3060229
## exper          0.5006397

sigmasquared_hat <- t(y-X%*%beta_hat)%*%(y-X%*%beta_hat)/(nrow(X)-ncol(X))
SE_beta_hat <- sqrt(diag(c(sigmasquared_hat)*solve(t(X)%*%X))); SE_beta_hat

## (Intercept)   sexFemale      senior         age        educ       exper 
## 652.2713190 128.9700022   5.2957316   0.7206541  24.8635404   1.0552624

bsali = β0 + β1sexi + β2seniori + β3agei + β4educi + β5experi + ϵi

β̂
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BACK TO OUR MOTIVATING EXAMPLE

Let's fit the same MLR model using the lm command in R.

regwage <- lm(bsal~ sex + senior + age + educ + exper, data= wages)
summary(regwage)

## 
## Call:
## lm(formula = bsal ~ sex + senior + age + educ + exper, data = wages)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1217.36  -342.83   -55.61   297.10  1575.53 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6277.8934   652.2713   9.625 2.36e-15
## sexFemale   -767.9127   128.9700  -5.954 5.39e-08
## senior       -22.5823     5.2957  -4.264 5.08e-05
## age            0.6310     0.7207   0.876 0.383692
## educ          92.3060    24.8635   3.713 0.000361
## exper          0.5006     1.0553   0.474 0.636388
## 
## Residual standard error: 508.1 on 87 degrees of freedom
## Multiple R-squared:  0.5152,    Adjusted R-squared:  0.4873 
## F-statistic: 18.49 on 5 and 87 DF,  p-value: 1.811e-12
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INTERPRETATION OF COEFFICIENTS

Each estimated slope is the amount  is expected to increase when the
value of the corresponding predictor is increased by one unit, holding the
values of the other predictors constant.

For example, the estimated coefficient of educ is approximately 92.

Interpretation: For each additional year of education for an employee,
we expect baseline salary to increase by about $92, holding all other
variables constant.

That interpretation is a bit different when dealing with a binary variable
(more generally, categorical/factor variables).

For example, the estimated coefficient of sex (sexFemale) is
approximately -768.

Interpretation: For employees who started at the same time, had the
same education and experience, and were the same age, women earned
$768 less on average than men.

y
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WHICH VARIABLE IS THE STRONGEST PREDICTOR

OF THE OUTCOME?
The coefficient that has the strongest linear association with the
outcome variable is the one with the largest absolute value of T (referred
to as -value in the R output), the test statistic, which equals the
coefficient over the corresponding SE.

Note:  is NOT the size of the coefficient.

The size of the coefficient is sensitive to scales of predictors, but  is
not, since it is a standardized measure.

Example: In our regression, seniority is a better predictor than education
because it has a larger .

t

T

T

T
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MODEL FIT

How sure are we that this is actually a good model for this data?

The easiest thing to do would be to look at the R-squared.

R-squared has the same interpretation under both SLR and MLR, that is,
the proportion of variation in the response variable, that is being
explained by the regression fit.

In this example, that proportion is approximately 52%. We will see if we
can do better later.

The adjusted R-squared is a modified version of R-squared that penalizes
the original R-squared as extra variables are included in the model.

In this example, we have approximately 48%, lower than the original 52%.

We can do much better in assessing model fit, as we will see over the
next few modules.
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CENTERING

How should we interpret the estimated intercept ?

Generally speaking, we can say that the baseline salary for male
employees, with zero age, zero seniority, zero education and zero
experience is $6278.

This is clearly not meaningful or realistic. Why?

One way around this problem is centering. We can mean-center (can also
scale if we want) continuous predictors to improve interpretation of the
intercept.

Centering does not really improve model fit, however it does help a lot
with interpretability.

β̂0 ≈ 6278
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CENTERING

So, for each continuous predictor,we will subtract its mean from every
value, and use these mean centered predictors in our regression instead.

The intercept can now be interpreted as the average value of  at the
average value of , which is much more interpretable.

Centering can be especially useful in models with interactions (which we
are yet to explore).

Centering can also help with multicollinearity (which we will also explore
soon).

Essentially, a transformed variable  may be highly correlated with the

untransformed counterpart , which we want to avoid. Centering 
before taking the square helps with that.

Going forward, we will often mean center continuous predictors.

Y
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CENTERING

wages$agec <- c(scale(wages$age,scale=F))
wages$seniorc <- c(scale(wages$senior,scale=F))
wages$experc <- c(scale(wages$exper,scale=F))
wages$educc <- c(scale(wages$educ,scale=F))
regwagec <- lm(bsal~ sex + seniorc + agec + educc + experc, data= wages)
summary(regwagec)

## 
## Call:
## lm(formula = bsal ~ sex + seniorc + agec + educc + experc, data = wages)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1217.36  -342.83   -55.61   297.10  1575.53 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5924.0072    99.6588  59.443  < 2e-16
## sexFemale   -767.9127   128.9700  -5.954 5.39e-08
## seniorc      -22.5823     5.2957  -4.264 5.08e-05
## agec           0.6310     0.7207   0.876 0.383692
## educc         92.3060    24.8635   3.713 0.000361
## experc         0.5006     1.0553   0.474 0.636388
## 
## Residual standard error: 508.1 on 87 degrees of freedom
## Multiple R-squared:  0.5152,    Adjusted R-squared:  0.4873 
## F-statistic: 18.49 on 5 and 87 DF,  p-value: 1.811e-12
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CENTERING

Notice that the coefficients for the predictors have not changed but the
intercept has changed.

We interpret the intercept as the average baseline salary for male
employees who are 474 months old, have 82 months of seniority, 12.5
years of education, and 101 months of experience.

colMeans(wages[,c("age","senior","educ","exper")])

##       age    senior      educ     exper 
## 474.39785  82.27957  12.50538 100.92742

Much more meaningful!
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SOME NOTES

We can't say for sure that our model has not violated any of the
assumptions. We must do model assessment just as with SLR.

We will address these issues and more over the next few modules.

Be very wary of extrapolation! Because there are several predictors, you
can fall into the extrapolation trap in many ways.

What do we mean by extrapolation?

Finally, note that multiple regression shows association.

It does NOT prove causality.

Only a carefully designed observational study or randomized experiment
or good causal inference methods can help show causality.
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WHAT'S NEXT?
MOVE ON TO THE READINGS FOR THE NEXT MODULE!

12 / 12


