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MULTIPLE LINEAR REGRESSION

Multiple linear regression (MLR) assumes the following distribution for a
response variable  given  potential covariates/predictors/features 

.

We can also write the model as:

MLR assumes that the conditional average or expected value of a
response variable is a linear function of potential predictors.

Note that the linearity is in terms of the "unknown" parameters (intercept
and slopes).

Just like in SLR, MLR also assumes values of the response variable follow
a normal curve within any combination of predictors.

yi p
xi = (xi1,xi2, … ,xip)

yi = β0 + β1xi1 + β2xi2 + … + βpxip + ϵi;   ϵi
iid
∼ N (0,σ2),    i = 1, … ,n.

yi
iid
∼ N (β0 + β1xi1 + β2xi2 + … + βpxip,σ2).

p(yi|xi) = N (β0 + β1xi1 + β2xi2 + … + βpxip,σ2).

2 / 10



MLR
Just as we had under SLR, here each  represents the true "unknown"

value of the parameter, while  represents the estimate of .

Similarly,  represents the true value of the response variable, while 
represents the predicted value. That is,

Also, the residuals  are our estimates of the true "unobserved" errors .
Thus,

Since the 's estimate the 's, we expect them to also be independent,
centered at zero, and have constant variance.

We will get into this more under model assessment.

βj

β̂j βj

yi ŷ i

ŷ i = β̂0 + β̂1xi1 + β̂xi2 + … + β̂xip.

ei ϵi

ei = yi − [β̂0 + β̂1xi1 + β̂xi2 + … + β̂xip] = yi − ŷ i.

ei ϵi
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MLR: ESTIMATION

Estimated coefficients are found by taking partial derivatives of the sum
of squares of the errors

with respect to each parameter, that is, .

This is the ordinary least squares (OLS) method.

Resulting formulas are a bit messy to write down in this form.

However, there is a very nice matrix algebra representation as we will
see soon.

n

∑
i=1

(yi − [β0 + β1xi1 + β2xi2 + … + βpxip])
2
,

β0, β1, … , βp
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MLR: ESTIMATION

An alternative derivation uses maximum likelihood estimation (MLE).

First, not that if each , with , follows the normal
distribution , then the likelihood is

So that for MLR, the likelihood is

To get the MLEs, take the log of the likelihood, differentiate with respect
to each parameter in , and set to zero.

Again, resulting formulas for  are a bit messy to write
down in this form.

Yi i = 1, … , n
Yi ∼ N (μ, σ2)

L(μ, σ2|y1, … , yn) =
n

∏
i=1

(2πσ2)
−

 e
− (yi−μ)

2

= (2πσ2)
−

 e
−

n

∑
i=1

(yi−μ)2

.

1
2

1

2σ2

n

2

1

2σ2

L(β0, β1, … , βp, σ2|y1, … , yn) = (2πσ2)
−

 e
−

n

∑
i=1

(yi−[β0+β1xi1+…+βpxip])2

.
n

2

1

2σ2

(β0, β1, … , βp, σ2)

(β0, β1, … , βp)
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MLR: ESTIMATION

The MLE for  (work it out to convince yourself) is

However, the MLE is biased. That is, .

Therefore, we often used the following "unbiased" estimator for .

Most software packages will estimate  automatically.

σ2

σ̂
2
MLE =

n

∑
i=1

(yi − [β̂0 + β̂1xi1 + … + β̂pxip])
2

=
n

∑
i=1

(yi − ŷ i)
2

=
n

∑
i=1

e2
i .

1

n

1

n

1

n

E[σ̂2
MLE] ≠ σ2

σ2

σ̂2 = s2
e =

n

∑
i=1

(yi − ŷ i)
2

=
n

∑
i=1

e2
i .

1

n − (p + 1)

1

n − (p + 1)

s2
e
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MLR: MATRIX REPRESENTATION

Let

Then, we can write the MLR model as

The OLS and MLE estimates of all  coefficients (intercept plus 
slopes) is then given by

Ideally, n should be bigger than p. Why?

There are many ways around the  problem. If there is time, we
may look at some options.

y =

⎡
⎢ ⎢ ⎢ ⎢ ⎢
⎣

y1

y2

⋮
yn

⎤
⎥ ⎥ ⎥ ⎥ ⎥
⎦

X =

⎡
⎢ ⎢ ⎢ ⎢ ⎢
⎣

1 x11 x12 … x1p

1 x21 x22 … x2p

⋮ ⋮ ⋮ ⋮ ⋮
1 xn1 xn2 … xnp

⎤
⎥ ⎥ ⎥ ⎥ ⎥
⎦

β =

⎡
⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢
⎣

β0

β1

β2

⋮
βp

⎤
⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥
⎦

ϵ =

⎡
⎢ ⎢ ⎢ ⎢
⎣

ϵ1

ϵ2

⋮
ϵn

⎤
⎥ ⎥ ⎥ ⎥
⎦

I =

⎡
⎢ ⎢ ⎢ ⎢
⎣

1 0 … 0
0 1 … 0

⋮ ⋮ ⋮ ⋮
0 0 … 1

⎤
⎥ ⎥ ⎥ ⎥
⎦

y = Xβ + ϵ;   ϵ ∼ N (0, σ2I).

(p + 1) p

β̂ = (X
T

X)
−1

X
T

y.

p > n
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MLR: MATRIX REPRESENTATION

The predictions can then be written as

The residuals can be written as

where  is a matrix of ones

The  matrix

is often called the projection matrix or the hat matrix.

We will see some important features of the elements of  soon.

ŷ = Xβ̂ = X [(XT X)
−1

XT y] = [X(XT X)
−1

XT] y.

e = y − ŷ = y − [X(XT X)
−1

XT] y = [1n − X(XT X)
−1

XT] y

1n

n × n

H = X(XT X)
−1

XT

H

8 / 10



MLR: MATRIX REPRESENTATION

In matrix form,

The variance of the OLS estimates of all  coefficients (intercept
plus  slopes) is

Notice that this is a covariance matrix; the square root of the diagonal
elements give us the standard errors for each , which we can use for
hypothesis testing and interval estimation.

What are the off-diagonal elements?

When estimating , plug in  as an estimate of .

Now that we have a basic introduction, we are ready see how to fit MLR
models.

s2
e =

n

∑
i=1

= = .
(yi − ŷ i)

2

n − (p + 1)

(y − Xβ̂)T (y − Xβ̂)

n − (p + 1)

eT e

n − (p + 1)

(p + 1)
p

V [β̂] = σ2(XT X)
−1

βj

V[β̂] s2
e σ2
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WHAT'S NEXT?
MOVE ON TO THE READINGS FOR THE NEXT MODULE!
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