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MULTIPLE LINEAR REGRESSION

= Multiple linear regression (MLR) assumes the following distribution for a
response variable y; given p potential covariates/predictors/features

x; = (Ti1, Tiz, - - -, Tip)-

o .
yi = Bo + Brzi + Batia + ... + Bptip + €5 € ~ N(0,6%), i=1,...,n.

= We can also write the model as:

o
yi ~ N'(Bo + By + Bazia + ... + Bpip, a?).

p(yilxi) = N(Bo + Brzi + Bowia + - .. + Bpip, 0°).

= MLR assumes that the conditional average or expected value of a
response variable is a linear function of potential predictors.

= Note that the linearity is in terms of the "unknown" parameters (intercept
and slopes).

= Just like in SLR, MLR also assumes values of the response variable follow
a normal curve within any combination of predictors.
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MLR

= Just as we had under SLR, here each 3; represents the true "unknown"
value of the parameter, while 8 ;j represents the estimate of B;.

= Similarly, y; represents the true value of the response variable, while ¥,
represents the predicted value. That is,

U = By = 89551 4F P03 =F c o - =F S8,

= Also, the residuals e; are our estimates of the true "unobserved” errors €;.
Thus,

€ = Yi — {50"',813%'1 + Bxio +---+ﬂxip:| =y — Y,

= Since the e;'s estimate the ¢;'s, we expect them to also be independent,
centered at zero, and have constant variance.

= We will get into this more under model assessment.
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MLR: ESTIMATION

= Estimated coefficients are found by taking partial derivatives of the sum
of squares of the errors

Z (yi — [Bo+ Brzin + Boio + ... + ,Bpwip])2a
1=1
with respect to each parameter, that is, Bo, S1, .- ., Bp-
= This is the ordinary least squares (OLS) method.

= Resulting formulas are a bit messy to write down in this form.

= However, there is a very nice matrix algebra representation as we will
see soon.
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MLR: ESTIMATION

= An alternative derivation uses maximum likelihood estimation (MLE).

= First, not that if each Y;, with7 = 1,...,n, follows the normal
distribution Y; ~ N (u, o), then the likelihood is

a S
L(’LL, O'2|y1, .. ,yn) — H (27-‘-0.2) 2 e 202 (yz /1')

= So that for MLR, the likelihood is

1 & B
_n =53 Wi [BotBizat. . +Bpip))
L(ﬁo”Bl"' '7/BP7U2|y17'° '7yn) - (27T02) e’ = .

= To get the MLEs, take the log of the likelihood, differentiate with respect
to each parameter in (8o, 81, - . ., Bp, o), and set to zero.

= Again, resulting formulas for (o, 51, - - -, Bp) are a bit messy to write
down in this form.




MLR: ESTIMATION

The MLE for o2 (work it out to convince yourself) is

. 1 N . 1\2
‘712\/1LE T Z (yz - [50 + b1z + ...+ ﬁpwz’pD
i=1
n

1 & ., 1 )
:g2(yi_yi) :;Zei‘
P

i=1

= However, the MLE is biased. That is, E[63 5] # o2

Therefore, we often used the following "unbiased” estimator for o2,

1
A2 2 A 2
0’ =85 = i — U, e

i=1

Most software packages will estimate s2 automatically.




MLR: MATRIX REPRESENTATION

= et
_ - 50
Y1 1 z11 z12 ... Ty 5(1) €1 1 0 0
Y2 1 a1 292 .o T2p 5 €9 0 1 0
y = X = B=|P2| e= I=1. . :
yn | 1 Inl In2 . e :Enp _ ﬂ. en O 0 ].
L ~p

= Then, we can write the MLR model as
y=XB+¢€ €~ N(0,0°I).

= The OLS and MLE estimates of all (p + 1) coefficients (intercept plus p
slopes) is then given by

B=(x"x)"'Xx"y.
Ideally, n should be bigger than p. Why?

There are many ways around the p > n problem. If there is time, we
may look at some options.




MLR: MATRIX REPRESENTATION

= The predictions can then be written as
~ 5 T v\ 1T T\ 1T
§=XB=X|(X"X) 'XTy| = [X(X7X) ' X7|y.
= The residuals can be written as
N T v\ 1T T v\ T
e—y—g—y— [X(X x)'x }y: [1n—X(X X)X }y
where 1,, is a matrix of ones
= The n X n matrix
H=X(X"Xx) X7
is often called the projection matrix or the hat matrix.

= We will see some important features of the elements of H soon.



MLR: MATRIX REPRESENTATION

= |[n matrix form,

2= i (i — ;) _ (- XB)T(y— XB) el

—~ n—(p+1) n—(p+1) n—(p+1)

= The variance of the OLS estimates of all (p + 1) coefficients (intercept
plus p slopes) is

A

V|8 =o*(x7X)"

= Notice that this is a covariance matrix; the square root of the diagonal
elements give us the standard errors for each Bj, which we can use for

hypothesis testing and interval estimation.

What are the off-diagonal elements?

A

= When estimating V[3], plug in s2 as an estimate of 2.

= Now that we have a basic introduction, we are ready see how to fit MLR

models.




WHAT'S NEXT?

MOVE ON TO THE READINGS FOR THE NEXT MODULE!
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